Monitoring RNA–Ligand Interactions Using Isothermal Titration Calorimetry

Isothermal titration calorimetry (ITC) is a biophysical technique that measures the heat evolved or absorbed during a reaction to report the enthalpy, entropy, stoichiometry of binding, and equilibrium association constant. A significant advantage of ITC over other methods is that it can be readily applied to almost any RNA–ligand complex without having to label either molecule and can be performed under a broad range of pH, temperature, and ionic concentrations. During our application of ITC to investigate the thermodynamic details of the interaction of a variety of compounds with the purine riboswitch, we have explored and optimized experimental parameters that yield the most useful and reproducible results for RNAs. In this chapter, we detail this method using the titration of an adenine-binding RNA with 2,6-diaminopurine (DAP) as a practical example. Our insights should be generally applicable to observing the interactions of a broad range of molecules with structured RNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic €32.70 /Month

Buy Now

Price includes VAT (France)

eBook EUR 85.59 Price includes VAT (France)

Softcover Book EUR 152.96 Price includes VAT (France)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

Characterization of Molecular Interactions Using Isothermal Titration Calorimetry

Chapter © 2014

Analysis of Protein–DNA Interactions Using Isothermal Titration Calorimetry: Successes and Failures

Chapter © 2022

Label-Free Determination of the Dissociation Constant of Small Molecule-Aptamer Interaction by Isothermal Titration Calorimetry

Chapter © 2016

References

  1. Mizoue, L. S., and Tellinghuisen, J. (2004). Calorimetric vs. van’t Hoff binding enthalpies from isothermal titration calorimetry: Ba 2+ -crown ether complexation. Biophys. Chem. 110, 15–24. ArticlePubMedCASGoogle Scholar
  2. Leulliot, N., and Varani, G. (2001). Current topics in RNA-protein recognition: control of specificity and biological function through induced fit and conformational capture. Biochemistry 40, 7947–7956. ArticlePubMedCASGoogle Scholar
  3. Gilbert, S. D., Mediatore, S. J., and Batey, R. T. (2006). Modified pyrimidines specifically bind the purine riboswitch. J. Am. Chem. Soc. 128, 14214–14215. ArticlePubMedCASGoogle Scholar
  4. Gilbert, S. D., Stoddard, C. D., Wise, S. J., and Batey, R. T. (2006). Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain. J. Mol. Biol. 359, 754–768. ArticlePubMedCASGoogle Scholar
  5. Wang, L., Kumar, A., Boykin, D. W., Bailly, C., and Wilson, W. D. (2002). Comparative thermodynamics for monomer and dimer sequence-dependent binding of a heterocyclic dication in the DNA minor groove. J. Mol. Biol. 317, 361–374. ArticlePubMedCASGoogle Scholar
  6. Kaul, M., Barbieri, C. M., Srinivasan, A. R., and Pilch, D. S. (2007). Molecular determinants of antibiotic recognition and resistance by aminoglycoside phosphotransferase (3′)-IIIa: a calorimetric and mutational analysis. J. Mol. Biol. 369, 142–156. ArticlePubMedCASGoogle Scholar
  7. Batey, R. T., Gilbert, S. D., and Montange, R. K. (2004). Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature432, 411–415. ArticlePubMedCASGoogle Scholar
  8. Mandal, M., Boese, B., Barrick, J. E., Winkler, W. C., and Breaker, R. R. (2003). Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell113, 577–586. ArticlePubMedCASGoogle Scholar
  9. Feig, A. L. (2007). Applications of isothermal titration calorimetry in RNA biochemistry and biophysics. Biopolymers87, 293–301. ArticlePubMedCASGoogle Scholar
  10. Kaul, M., Barbieri, C. M., and Pilch, D. S. (2005). Defining the basis for the specificity of aminoglycoside-rRNA recognition: a comparative study of drug binding to the A sites of Escherichia coli and human rRNA. J. Mol. Biol. 346, 119–134. ArticlePubMedCASGoogle Scholar
  11. Kaul, M., and Pilch, D. S. (2002). Thermodynamics of aminoglycoside-rRNA recognition: the binding of neomycin-class aminoglycosides to the A site of 16S rRNA. Biochemistry41, 7695–7706. ArticlePubMedCASGoogle Scholar
  12. Pilch, D. S., Kaul, M., Barbieri, C. M., and Kerrigan, J. E. (2003). Thermodynamics of aminoglycoside-rRNA recognition. Biopolymers70, 58–79. ArticlePubMedCASGoogle Scholar
  13. Gilbert, S. D., Love, C. E., Edwards, A. L., and Batey, R. T. (2007). Mutational analysis of the purine riboswitch aptamer domain. Biochemistry46, 13297–13309. ArticlePubMedCASGoogle Scholar
  14. Bernacchi, S., Freisz, S., Maechling, C., Spiess, B., Marquet, R., Dumas, P., and Ennifar, E. (2007). Aminoglycoside binding to the HIV-1 RNA dimerization initiation site: thermodynamics and effect on the kissing-loop to duplex conversion. Nucleic Acids Res. 35, 7128–7139. ArticlePubMedCASGoogle Scholar
  15. Diamond, J. M., Turner, D. H., and Mathews, D. H. (2001). Thermodynamics of three-way multibranch loops in RNA. Biochemistry40, 6971–6981. ArticlePubMedCASGoogle Scholar
  16. Mikulecky, P. J., Takach, J. C., and Feig, A. L. (2004). Entropy-driven folding of an RNA helical junction: an isothermal titration calorimetric analysis of the hammerhead ribozyme. Biochemistry43, 5870–5881. ArticlePubMedCASGoogle Scholar
  17. Hammann, C., Cooper, A., and Lilley, D. M. (2001). Thermodynamics of ion-induced RNA folding in the hammerhead ribozyme: an isothermal titration calorimetric study. Biochemistry40, 1423–1429. ArticlePubMedCASGoogle Scholar
  18. Takach, J. C., Mikulecky, P. J., and Feig, A. L. (2004). Salt-dependent heat capacity changes for RNA duplex formation. J. Am. Chem. Soc. 126, 6530–6531. ArticlePubMedCASGoogle Scholar
  19. Recht, M. I., and Williamson, J. R. (2001). Central domain assembly: thermodynamics and kinetics of S6 and S18 binding to an S15–RNA complex. J. Mol. Biol. 313, 35–48. ArticlePubMedCASGoogle Scholar
  20. Recht, M. I., and Williamson, J. R. (2004). RNA tertiary structure and cooperative assembly of a large ribonucleoprotein complex. J. Mol. Biol. 344, 395–407. ArticlePubMedCASGoogle Scholar
  21. Milligan, J. F., Groebe, D. R., Witherell, G. W., and Uhlenbeck, O. C. (1987). Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res. 15, 8783–8798. ArticlePubMedCASGoogle Scholar
  22. Montange, R. K., and Batey, R. T. (2006). Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature441, 1172–1175. ArticlePubMedCASGoogle Scholar
  23. Gilbert, S. D., Montange, R. K., Stoddard, C. D., and Batey, R. T. (2006). Structural studies of the purine and SAM binding riboswitches. Cold Spring Harb. Symp. Quant. Biol. 71, 259–268. ArticlePubMedCASGoogle Scholar
  24. Agalarov, S. C., Sridhar Prasad, G., Funke, P. M., Stout, C. D., and Williamson, J. R. (2000). Structure of the S15,S6,S18-rRNA complex: assembly of the 30S ribosome central domain. Science288, 107–113. ArticlePubMedCASGoogle Scholar
  25. Orr, J. W., Hagerman, P. J., and Williamson, J. R. (1998). Protein and Mg(2+)-induced conformational changes in the S15 binding site of 16S ribosomal RNA. J. Mol. Biol. 275, 453–464. ArticlePubMedCASGoogle Scholar
  26. Mandal, M., and Breaker, R. R. (2004). Adenine riboswitches and gene activation by disruption of a transcription terminator. Nat. Struct. Mol. Biol. 11, 29–35. ArticlePubMedCASGoogle Scholar
  27. Turnbull, W. B., and Daranas, A. H. (2003). On the value of c: can low affinity systems be studied by isothermal titration calorimetry? J. Am. Chem. Soc. 125, 14859–14866. ArticlePubMedCASGoogle Scholar
  28. Tellinghuisen, J. (2008). Isothermal titration calorimetry at very low c. Anal. Biochem. 373, 395–397. ArticlePubMedCASGoogle Scholar
  29. Tellinghuisen, J. (2005). Optimizing experimental parameters in isothermal titration calorimetry. J. Phys. Chem. B109, 20027–20035. ArticlePubMedCASGoogle Scholar
  30. Mizoue, L. S., and Tellinghuisen, J. (2004). The role of backlash in the “first injection anomaly” in isothermal titration calorimetry. Anal. Biochem. 326, 125–127. ArticlePubMedCASGoogle Scholar
  31. MicroCal, LLC. (2003), Northampton, MA. Google Scholar
  32. Briggner, L. E., and Wadso, I. (1991). Test and calibration processes for microcalorimeters, with special reference to heat conduction instruments used with aqueous systems. J. Biochem. Biophys Methods22, 101–118. ArticlePubMedCASGoogle Scholar
  33. Liu, Y., and Sturtevant, J. M. (1997). Significant discrepancies between van’t Hoff and calorimetric enthalpies. III. Biophys. Chem. 64, 121–126. ArticlePubMedCASGoogle Scholar
  34. Tellinghuisen, J. (2005). Statistical error in isothermal titration calorimetry: variance function estimation from generalized least squares. Anal. Biochem. 343, 106–115. ArticlePubMedCASGoogle Scholar
  35. Lemay, J. F., and Lafontaine, D. A. (2007). Core requirements of the adenine riboswitch aptamer for ligand binding. RNA13, 339–350. ArticlePubMedCASGoogle Scholar
  36. Wadso, I., and Goldberg, R. N. (2001). Standards in isothermal titration calorimetry. Pure Appl. Chem. 73, 1625–1639. ArticleCASGoogle Scholar
  37. Tellinghuisen, J. (2007). Optimizing experimental parameters in isothermal titration calorimetry: variable volume procedures. J. Phys. Chem. B111, 11531–11537. ArticlePubMedCASGoogle Scholar
  38. Batey, R. T., and Kieft, J. S. (2007). Improved native affinity purification of RNA. RNA13, 1384–1389. ArticlePubMedCASGoogle Scholar

Acknowledgments

The authors would like to thank Deborah Wuttke and Jonas Fast for useful discussions on optimizing ITC experiments. This work was made possible by a Research Scholar Grant from the American Cancer Society to R.T.B.

Author information

Authors and Affiliations

  1. Department of Chemistry and Biochemistry, University of Colorado, Boulder, Campus Box 215, Boulder, CO 80309-0215, USA Sunny D. Gilbert & Robert T. Batey
  1. Sunny D. Gilbert